On the q-exponential of matrix q-Lie algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولq-deformed Lie algebras and fractional calculus
Fractional calculus and q-deformed Lie algebras are closely related. Both concepts expand the scope of standard Lie algebras to describe generalized symmetries. For the fractional harmonic oscillator, the corresponding q-number is derived. It is shown, that the resulting energy spectrum is an appropriate tool e.g. to describe the ground state spectra of even-even nuclei. In addition, the equiva...
متن کاملON ($epsilon, epsilon vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS
The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras i...
متن کاملRepresentations of Semisimple Lie Algebras Have Q - Forms Dave Witte
We prove that each real semisimple Lie algebra g has a Q-form g Q , such that every real representation of g Q can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.
متن کاملReal Representations of Semisimple Lie Algebras Have Q-forms
We prove tha t each real semisimple Lie algebra g has a Q-form go, such that every real representation of go can be realized over Q. This was previously proved by M. S. Raghunathan (and rediscovered by P. Eberlein) in the special case where g is compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Special Matrices
سال: 2017
ISSN: 2300-7451
DOI: 10.1515/spma-2017-0003